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ABSTRACT

This thesis presents techniques of modeling large and dense networks and methods

of computing distances between them. Large and dense networks arise in many disci-

plines. Through recent advancements in dense graph theory and graph convergence,

we have a new perspective on how large graphs should be considered and how the simi-

larity of graphs should be computed. The thesis discusses the steps to approximate the

distance between graphs and the integration of a new search algorithm to accelerate

computation. A software package is produced to estimate distances between graphs

and made available as the Cutnorm package on PyPI. The algorithm and software

shows great performance on theoretical models and is faster than existing implementa-

tions. The thesis also explores practical applications of the graph convergence theory

and Cut-Distances. It presents the theory and techniques to analyze human brain con-

nectivity graphs from the ADHD200 dataset of the 1000 Connectome Project. It also

presents a new insight to monitoring Artificial Neural Network convergence during the

training process.
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CHAPTER 1: INTRODUCTION

Large graphs arise in many problems and disciplines. Graphs model relationships

between entities (nodes). Thus many of the structures and problems in the world

can be modeled as graphs. Graphs with large number of nodes are large graphs. An

example of a large graph is the human brain. It has billions of neurons and each

of them can be represented as nodes and their connectivity as edges. The internet

has billions of endpoints that are connected and transmitting information. Each of

the endpoints can be represented as nodes and the information transmitted as edges.

Statistical physics model interactions between large numbers of particles. The particles

can be represented as nodes and their interactions as edges.

These problems call for specialized mathematics and computational techniques.

Many really large graphs cannot be computationally expressed as a whole and only

samples of the large graphs can be considered. Thus special care needs to be taken to

evaluate properties about them.

This thesis explores the distances between graphs. While much work has been done

on the theory of properties within a single graph such as the distances between nodes,

properties of graphs within a family of graphs are of interest to many applications.

One of such application is the human connectome, a map of the neuron connections

in the human brain. Given the human brain connectivity graph between a diseased

patient and a healthy control, what is the distance between the them? Is it possible

to amplify distances between differing graphs for predictive purposes? How can we

approximate this distance? The sheer number of neurons in the brain makes this a

very large graph problem.

To answer these questions, we need to study the convergence of graphs, infinite

graphs, graph limit objects, measure preserving maps, notion of distance with respect
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the graphs, and the methods of approximating the distance.

The thesis introduces a new search algorithm for approximating the Cut-Distance

between two graphs. We also produced open source software for general adoption of

the technique.

My work relies heavily on the works of Lovasz and Borgs on the theory of dense

graph convergence [1], [2], the works of Alon, Noar, Freize, and Kannan on Cutnorm

and approximation techniques [3], [4], and the works of Wen and Yin on optimization

algorithms [5].

Most of Chapter 2 and 3 will summarize previous work and provide more detailed

explanations and analysis to certain concepts to set up for the techniques and applica-

tions in later chapters.
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CHAPTER 2: DISTANCE BETWEEN GRAPHS

2.1 Convergence of Graphs

A simple finite graph G = (V,E) contains vertex set V = {v1, . . . , vn} and edge set

E ⊆ V ×V . Let the adjacency matrix A = ai,j where ai,j = 1 if (vi, vj) ∈ E and ai,j = 0

otherwise. A is a representation of the connectivity of the graph. The definition can

be generalized to incorporate weighted edges and weighted vertices.

We can trivially incorporate weighted edges by replacing the 1 in the adjacency

matrix with the edge weights and incorporate weighted nodes by defining α(v) as

weights of each vertex where
∑

v∈V α(v) = 1.

Homomorphisms between two graphs G and H are mappings f : V (G) → V (H)

such that that (f(u), f(v)) ∈ E(H) for every (u, v) ∈ E(G). Alternatively, homomor-

phisms preserve adjacency between graphs. The notion of homomorphism is helpful

when considering the global structural similarity between different graphs of varying

sizes.

Many graph problems we observe in nature are graphs as a sample of larger graphs.

For an example, the graph of the internet is large but only a portion of it can be

sampled at a time. When we know precisely that the graphs we are studying are

samples of larger graphs, it is especially important that we assess their properties with

the larger graphs in consideration.

So far, we have only considered finite graphs and standard definitions for them.

Large and infinite graphs are important as we generalize the sampling of small graphs

from large or infinite graphs.

Several ground-breaking theories have been developed on the convergence of dense

graphs in recent years. Lovasz and Szegedy [6] has generalized the notion of graph limits
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to measurable symmetric functions in W : [0, 1]2 → [0, 1] referred to as graphons. The

measurable symmetric functions are representations of infinite graphs. Consider the

adjacency matrix of sequence of graphs Gn as n→∞ where n represents the number

of vertices of the graph. Graphons are the limit objects for which a graph sequence

Gn converges to. Borgs et al. [2] has defined the convergence sequences of graphs in

terms of homomorphism densities from small graphs to large graphs (left convergence)

and from large graphs to small graphs (right convergence). Homomorphism from small

graphs to large graph G is of particular interest to us due to its relation to the sampling

of G and the distance between two small graphs. We can consider small graphs to be

homomorphic to large graphs if there exists adjacency preserving mapping from the

small graph to the large graph. A homomorphic sampling of the large graph G is then

a small graph where the global structure is preserved.

The idea of sampling can be further extended as we consider infinite graphs in the

space of W and step functions W ∈ W as detailed by Lovasz [7]. Here we summarize

Lovasz’s findings to aid the discussion of the significance of the Cutnorm introduced

later. Step functions W are graphons where [0, 1] is partitioned into k distinct subsets

S = {S1, . . . , Sk} where each region in S × S is constant. Consider a finite graph Gn

as n → ∞, step functions W represent graphon limit objects for finite graphs. Each

region in S × S represents some edge weight between the two sets of vertices.

Two graphons W and W ′ are weakly isomorphic if there exists another graphon U

such that there exists measure preserving maps φ, φ′ : [0, 1] → [0, 1] where W (x, y) =

U(φ(x), φ(y)) and W ′(x, y) = U(φ′(x), φ′(y)) for almost all x, y ∈ [0, 1]. The idea that

graph sequences Gn converges to some limit objectW ∈ W and that these limit objects

can have weak isomorphisms between each other helps us define distances between

graphs. Two graphs G and G′ sampled from the same graphon may not be isomorphic

or homomorphic, but the graphon that they converge to may be isomorphic or weakly
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isomorphic. By looking at how weakly isomorphic two graphons are, we can then define

distances between graphs.

2.2 Measure Preserving Maps

In the previous section, we introduced measure preserving maps φ, φ′ : [0, 1]→ [0, 1]

that defines weak isomorphism between graphons. The discrete analogue would be a

mapping of vertices, ψ : V (G)→ V (H), between two graphs G, H.

Exactly how to find the measure preserving maps depends on the information of

the vertex sets. Two properties of the vertex sets give information to the difficulty of

finding the measure preserving maps: the cardinalities and the labels. In particular,

we need to answer the questions: Are the cardinalities of the two vertex sets |VG| and

|VH | equivalent?, and are the two vertex sets labeled?

If the cardinalities of the vertex sets are equal and the vertex sets are labeled, then

the bijection between the two vertex sets is the measure preserving map. This can be

achieved in constant time.

If the cardinalities of the vertex sets are not equal but the vertex sets are labeled,

then the labels already give a surjection between the two vertex sets. The surjection

can then be used to re-scale the graph so that there exists a bijection between the

two new vertex sets. Additionally, if we have additional information regarding the

problem, we can define measure preserving maps that are reasonable. For an example,

we may wish to investigate the relationships of stock prices in the S&P 500 index over

the past 40 years. However, the index list is dynamic; companies can be listed and

unlisted from the index. If we wish to treat companies as individual entities, we may

be limited to only monitoring companies that are on the list for the entirety of the

date range that we are investigating. If we are interested in the relationships between

various sectors, we can perform aggregation of the companies by their sector label.
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The aggregation process is an example of a Measure Preserving Map. By mapping all

companies within one sector into one statistic representing the sector, data of the 500

companies at different times can be properly compared with each other. Given labeled

graphs that have different vertex set cardinalities, we can find measure preserving maps

in polynomial time.

If the cardinalities of the vertex sets are equal but the vertex sets are not labeled,

then a bipartite matching has to be done to find a bijection for the two vertex sets.

The brute force method can be achieved in O(n!) where n is the size of the vertex set.

If the cardinalities are not equal and the vertex sets are not labeled, then the entire

function space needs to be searched over. This can be achieved in O(|V (G)||V (H)|).

From this point on in the thesis, we will assume that our problems are of the first

two cases above: Either we already have a measure preserving map, or we can find a

measure preserving map in polynomial time.

2.3 Using lp Norm as Dissimilarity Measure

The vector lp norm of a vector x = [x1, . . . , xn] is defined as

||x||p :=

(
n∑
i=1

|xi|p
)1/p

Given vectorized adjacency matrices A and B, the lp norm of the difference is a

dissimilarity measure. Let us define the distance between two graphs given by the lp

norm as

dlp :=
1

n2/p
||(A−B)||p (2.1)

The normalization enforces bounded solutions. It is determined according to the
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supremum of each norm in the binary case, supB∈{0,1}n2 ||B||p. For an example, the lp

norms of the difference adjacency matrices of simple unweighted graphs is bounded by

0 ≤ dlp ≤ 1

Of the various lp norms, the l1 norm is the most straight forward and it represents

the edit distance: For binary graphs, the number of edits needed to make one graph

identical to the other. Given two identical graphs, the edit distance between the

adjacency matrices is zero since every entry is identical. Given two binary graphs

where each entry of one graph’s matrix contains the binary complement of the other,

the edit distance is one. The edit distance is the simplest notion of distance between

the adjacency matrix representation of two graphs.

However, the lp norms are inadequate for assessing global structural similarities

between graphs. Lovasz discusses this through the example of Erdős-Rényi random

graphs [1]. The simple Erdős-Rényi model G(n, p) considers graphs of n vertices where

each pair of vertices are connected independently with probability p [8]. The graphon

limit of this object as n→∞ is g : [0, 1]2 → p.

Consider two independently generated Erdős-Rényi random graphs, A and B, of

size n with probability 0.5. The l1 norm of the difference matrix is 0.5 with high

probability, but the graphon limit object of the two are identical. Thus, the l1 norm

of the difference matrix cannot represent structural similarity when considering the

convergence of graphs to graphon limit objects. Since l1 ≤ l2 ≤ l∞, the other lp norms

do not adequately represent structural similarities either.
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2.4 Cutnorm as Dissimilarity Measure

Given a matrix A = (aij)i∈R,j∈S, the cut norm is defined as

‖A‖� := max
I⊆R,J⊆S

∣∣∣∣∣ ∑
i∈I,j∈J

aij

∣∣∣∣∣ (2.2)

The Cutnorm was first formulated by Freize and Kannan [4]. It was devised for their

work on approximation algorithms for dense graph problems.

The Cut-Distance is then

d�(A,B) :=
1

n2
||(A−B)||� (2.3)

Here we assume a reasonable measure preserving map is available and has trans-

formed our matrices A,B into the same dimensions.

Alon and Noar has shown that the Cutnorm is MAXSNP hard via reduction from

the MAXCUT problem [3] and also devised additional ρ-approximation algorithms for

the Cutnorm.

Figure 2.1: An illustration of Cutnorm vectors, the two vectors on the left and top
of the matrix, and the Cutnorm elements of the matrix from the product of the two
vectors

In Figure 2.1, we illustrate the Cutnorm pictorially. Consider the two vectors on the

left and top of the matrix as the Cutnorm sets I, J . A black cell in the vector represents

set membership within I, J . The black cells in the matrix represent all elements of I×J .
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These cells are the elements that will be summed over in the Cutnorm computation.

We also observe in (2.3) that a 1/n2 normalization is applied. This is established

by previous literature from Lovasz and Freize. It imposes a restriction on the types of

problems that are appropriate for the Cutnorm. Graphs that we measure to be dense.

A dense graph is one where the number of edges connected to each node is a positive

percentage of the total number of nodes. This ensures that as n→∞, the number of

edges as a percentage does not converge to zero.

The thesis will present properties that the Cutnorm has on large and dense graph

problems.
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CHAPTER 3: CUTNORM APPROXIMATION

Alon and Noar [3] devised several randomized approximation algorithms that solves

for I, J such that

∣∣∣∣∣ ∑
i∈I,j∈J

aij

∣∣∣∣∣ ≥ ρ ‖A‖� (3.1)

where ρ = 0.56. This thesis has adopted one of Alon and Noar’s algorithms with a

modification that allows for the use of a fast optimization algorithm. We introduce a

new SDP solver by Wen and Yin [5]. This new SDP solver is used to find the solution

to the ‖A‖∞→1 SDP relaxation. We also introduce SVD to the rounding process for

low rank adjacency matrices.

The rounding method that we will implement is one with lower bound but compu-

tationally feasible. It has ρ = 0.27.

3.1 Process of Approximation

Figure 3.1: A diagram showing the overall process of approximating the Cutnorm

Figure 3.1 shows the sequence of reduction, relaxation, and rounding that is required
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to compute the Cutnorm as detailed by Alon and Noar [3].

To understand the entire reduction process, we need to first understand why they

are necessary.

3.2 Why the ‖A‖∞→1?

Alon and Noar mentioned that it is “convenient” to study the ‖A‖∞→1. We will

discuss why it is so.

The formulation of ‖A‖∞→1 is as follows

‖A‖∞→1 = max
xi,yi∈{−1,1}

n∑
i=1

m∑
j=1

aijxiyj (3.2)

The ‖A‖∞→1 optimizes over two binary vectors ∈ {−1, 1}n. In the objective func-

tion, the element to be summed over is positive if sign(xi) = sign(yi), and negative

otherwise.

Consider, again, the Cutnorm problem formulation in (2.2)

‖A‖� := max
I⊆R,J⊆S

∣∣∣∣∣ ∑
i∈I,j∈J

aij

∣∣∣∣∣
.

This Cutnorm optimization problem deals with set membership of vertices in the

sets I ⊆ R, J ⊆ S. Another formulation of the Cutnorm problem that deals with the

assignment of {0, 1} to the vertex sets instead of set membership is the following

‖A‖� = max
xi,yi∈{0,1}

∣∣∣∣∣
n∑
i=1

m∑
j=1

aijxiyj

∣∣∣∣∣ (3.3)

This new formulation of the Cutnorm is similar to the Infinity-One norm problem
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with the exception of the binary assignment and the absolute value. The Infinity-One

norm introduces an alternative problem to the Cutnorm such that the magnitude of

the assignments are preserved, |xi|, |yi| = 1.

Further, it is shown by Alon and Noar that ‖A‖� ≤ ‖A‖∞→1 ≤ 4 ‖A‖� and in the

case of zero row sum and column sum, ‖A‖∞→1 = 4 ‖A‖�.

3.3 Cutnorm Invariant Transformation

Alon and Noar has revealed that one can always augment the original matrix to

create a zero row and column sum matrix that preserves Cutnorm. Therefore, one can

always utilize the relationship ‖A‖∞→1 = 4 ‖A‖�.

Since the proof was not explained in detail in the original paper, this thesis will

dive into the details of how the Cutnorm is preserved.

Given a real value matrix A = (ai,j)i∈R,j∈S, let A∗ be an (n + 1)× (m + 1) matrix

where for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, a∗i,j = ai,j, for all 1 ≤ j ≤ m, a∗n+1,j =
∑

i−ai,j, for

all 1 ≤ i ≤ n, a∗i,m+1 =
∑

j −ai,j, and a∗n+1,m+1 =
∑

i,j aij, ‖A‖� = ‖A∗‖�.

We show that this transformation preserves the Cutnorm.

Since A is a sub-matrix of A∗, ‖A‖� ≤ ‖A∗‖�. Suppose, ‖A∗‖� =
∣∣∣∑i∈I,j∈J aij

∣∣∣,
where I ⊂ [n+ 1], J ⊂ [m+ 1].

Let

P =

{
[n+ 1] \ I, if n+ 1 ∈ I
I, otherwise

,

Q =

{
[m+ 1] \ J, if m+ 1 ∈ J
J, otherwise

.
Let us examine the possibilities of P,Q pictorially.
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1. Given I, J = then P = I,Q = J

2. Given I, J = then P = [n+ 1] \ I,Q = J

3. Given I, J = then P = I,Q = [m+ 1] \ J

4. Given I, J = then P = [n+ 1] \ I,Q = [m+ 1] \ J

Since the sum of each row and column is zero, ‖A∗‖� =
∣∣∣∑i∈I,j∈J aij

∣∣∣ = ∣∣∣∑p∈P,q∈Q apq

∣∣∣.
Furthermore, since P ∈ R,Q ∈ S,

∣∣∣∑p∈P,q∈Q apq

∣∣∣ ≤ ‖A‖�. Therefore ‖A∗‖� ≤ ‖A‖�,

and we have ‖A∗‖� = ‖A‖�.

3.4 ‖A‖∞→1 SDP relaxation

The ‖A‖∞→1 can be relaxed to an SDP problem where an exact solution can be

found to some error bound.

The ‖A‖∞→1 SDP relaxation

max
ui,vi

∑
ij

aijui · vj (3.4)

subject to ‖ui‖ = ‖vj‖ = 1

where ui, vj ∈ Rp

The relaxation creates vectors ui, vi ∈ Rp instead of scalars xi, yi ∈ {−1, 1} of the

original ‖A‖∞→1 problem. Further, there is an orthogonality constraint of ‖ui‖ =

‖vj‖ = 1 to ensure that the absolute value of |xi| is equal to the ‖ui‖ = 1.
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Since we have SDP solvers that can guarantee SDP solutions to an error bound of

ε, we can solve for the solution to the SDP problem and round the solutions to our

original ‖A‖∞→1 problem to obtain a ρ-approximation algorithm.

3.5 Wen and Yin’s Search Algorithm and Reduction to MAX-

CUT SDP relaxation

Wen and Yin’s optimization algorithm [5] for problems with orthogonality con-

straints is well suited for our problem. Preservation of the constraints are expen-

sive for orthogonality preserving optimization algorithms. Through the use of Cayley

transformations and Crank-Nicolson update schemes, Wen and Yin formulated search

algorithms that is much cheaper than existing methods.

The optimization algorithm solves the MAXCUT SDP relaxation exactly. This

thesis uses a reduction from the ‖A‖∞→1 SDP relaxation to the MAXCUT SDP relax-

ation.

The ‖A‖∞→1 SDP relaxation in (3.4)

max
ui,vi

∑
ij

aijui · vj

subject to ‖ui‖ = ‖vj‖ = 1

where ui, vj ∈ Rp

We want to reduce the ‖A‖∞→1 SDP problem to the MAXCUT SDP problem discussed

in Wen & Yin’s Paper

max
V=[V1,...,Vn]

tr(CV ᵀV ) (3.5)

subject to ‖Vi‖ = 1, i = 1, . . . , n
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Using the trace identity
∑

ij wijxij = tr(WX), this is equivalent to

max
V=[V1,...,Vn]

∑
ij

cij(V
ᵀV )ij (3.6)

subject to ‖Vi‖ = 1, i = 1, . . . , n

By creating V = [u1, . . . , un, v1, . . . , vn] and C = [0A;A0], for the case where n = m,

we have the optimization problem

max
V=[u1,...,un,v1,...,vn]

∑
pq

apqup · vq +
∑
pq

apqvp · uq (3.7)

subject to ‖ui‖ = ‖vi‖ = 1, i = 1, . . . , n

And for the case where A is symmetric and square, we have

max
V=[u1,...,un,v1,...,vn]

2
∑
pq

apqup · vq (3.8)

subject to ‖ui‖ = ‖vi‖ = 1, i = 1, . . . , n

Here we specified symmetric and square A. This is true for the adjacency matrices

of simple graphs.

3.6 Choice of rank p for SDP relaxation

We have yet to define p, the vector length of ui, vi ∈ Rp, in the ‖A‖∞→1 SDP

relaxation of (3.4). We can pick p = n + m so that
∑

ij aijui · vj is the min of the

sdp [3]. Since the sdp solution is at least some constant away from ‖A‖∞→1, we can

guarantee a upper bound for the Cutnorm.

We choose p = max(min(round(
√

(2n)/2), 100), 1) according to the suggested pa-
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rameters in Wen & Yin’s Paper for the max cut problem. Theorem 3 in Wen and Yin’s

paper states that a larger p is unnecessary for the MAXCUT sdp problem.

3.7 Gaussian Rounding

Let ui, vj ∈ Rp be solutions of the ‖A‖∞→1 SDP relaxation. We would like to round

the solution back to the solution of ‖A‖∞→1.

Let g1, g2, . . . , gp be standard independent Gaussian random variables and G =

(g1, g2, . . . , gp).

xi = sign(uj ·G), yj = sign(vj ·G)

This rounding technique provides a solution that guarantees ρ = 4
π
− 1 ≈ 0.27 approx-

imation [3].

Since the solution of a ρ-approximation algorithm is bounded by ρOPT ≤ f(x) ≤

OPT for ρ < 1, we can repeat the rounding process and select the highest rounded

solution. This becomes a statistics sampling problem. Given that we can repeat the

rounding process to a sufficiently high number of iterations, we can obtain a sufficiently

accurate result.

If our adjacency matrix, A, is low rank, we can consider computing an singular

value decomposition first to reduce the rounding complexity.

Instead of the original rounding problem of

‖A‖∞→1 ≈
∑
i,j

Ci,jsign(g ∗ ui)sign(g ∗ vi) (3.9)

Using low rank approximation of rank q for A into a ∈ Rn×q, b ∈ Rq×n

‖A‖∞→1 ≈
∑
q

(
∑
i

ai,qsign(g ∗ ui))(
∑
j

bj,qsign(g ∗ vi)) (3.10)
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Rounding on the SVD rank q matrices results in O(qn) per iteration as opposed to

O(n2) via full rank matrices. The O(n3) cost of SVD has to be paid up front which

brings the entire rounding operation with multiple iterations to O(kqn)+O(n3) instead

of O(kn2) where k is the number of iterations. However, this is often justified as the

rounding operations can be expensive over many rounding iterations. Naturally, this

is only adequate if the adjacency matrix is sufficiently low rank.

After the SDP solutions are rounded to approximate solutions to the ‖A‖∞→1 prob-

lem, we can obtain the ‖A‖� solution via the relationship ‖A‖� = ‖A‖∞→1 /4.
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CHAPTER 4: CUTNORM PACKAGE

The Cutnorm approximation technique detailed in previous chapters has been im-

plemented and hosted on the Python Package Index for public use. The Cutnorm

package makes heavy use of Numpy operations for efficient vector and matrix oper-

ations. It also include several useful tools for calculating statistical significance and

generating model graphs.

There is an existing Cutnorm package by David Koslicki [9] that utilizes the same

technique from [3] but uses CSDP, a different SDP solver. Compared to Koslicki’s pack-

age, our Cutnorm package does not require separate binary installation and improves

the running time via the use of Wen and Yin’s search algorithm. The computational

times of Koslicki’s Cutnorm package and our Cutnorm package are shown in Figure

4.1. Same rounding iterations were used to measure the time of computation.
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Figure 4.1: Computational Time for computing Cutnorm between two (n,n) square
Erdős-Rényi Matrices
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4.1 Complexity Analysis

Overall, the time complexity of the Cutnorm algorithm described in this thesis is

O(kn2) + O(n2) where k is the number of rounding iterations, or O(knlogn) + O(n3)

if SVD of rank logn is performed prior to the rounding process.

The Wen and Yin’s proposed constraint preserving update scheme has computa-

tional complexity of 8np2+O(p3). With our choice of p, this translate to 4n2+O(n3/2)

which is of O(n2) per update. Since this update scheme uses a gradient method with

line search on the matrix manifold, it has a linear convergence to the optimum [10].

Thus it converges in O(ε−1) iterations where ε is the tolerance. This translates to a

total cost of O(n2

ε
) or O(n2) if we consider constant tolerance.

Preprocessing of the input matrices such as the re-weighting and re-scaling of the

input matrices is of O(n2). In each iteration of the rounding process, the rounding and

computation of the cutnorm is of O(n2). Thus the overall Gaussian rounding process is

O(kn2) for k iterations of rounding. If a logn low rank approximation of the difference

matrix is performed prior to rounding, the rounding process will incur an additional

O(n3) computational complexity for the SVD. However, this reduces the rounding time

complexity for the iterations to O(knlogn).

In our experiments, the rounding operation can be the bottleneck of the algorithm.

With the package default of 100 iterations, we find that the rounding time is several

magnitudes higher than the sdp solver time. The user should decide how many rounding

iterations is statistically sufficient and also determine if a low rank approximation of

the underlying difference matrix is suitable. If the underlying difference matrix is low

rank, then it is better to pay the up front cost of the SVD for faster rounding per

iteration times. The debug flag can be set to true to generate additional information

of the rounding process to determine the optimal parameters for the application.
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The space complexity of the Cutnorm algorithm is of O(n2). If debug flag is set,

some additional space of O(kn) is used to store the computational information.

4.2 Installation

The Cutnorm package is hosted on PyPI, the Python Package Index. To install the

package, run

1 pip i n s t a l l cutnorm

Currently, the package only supports Python3. All the relevant dependencies and files

will be downloaded and installed.

4.3 Cutnorm Package Components

cutnorm.compute

The compute module contains the compute_Cutnorm function where Cutnorm

between two matrices can be computed. compute_cutnorm supports weighted matri-

ces and matrices of different dimensions. The compute_Cutnorm function solves the

SDP problem with OptManiMulitBallGBB algorithm by Wen and Yin and performs

Gaussian rounding on the SDP solution to obtain the Cutnorm.

cutnorm.OptManiMulitBallGBB

OptManiMulitBallGBB module contains the optimization algorithm by Wen and

Yin. The original version released by Wen and Yin were in Matlab. We have translated

the Matlab code to Python. Most of the original structure and variable names remain

intact. In order to perform the reduction of Cutnorm to MAXCUT detailed in section

3.5, we have defined a new function, Cutnorm_quad, to compute objective function

value and gradient for Cutnorm.
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1 import numpy as np
2 from cutnorm import compute_cutnorm , t o o l s
3

4 # Generate Erd\H{o}s−R\ ’ eny i Random Graph
5 n = 100
6 p = 0 .5
7 erdos_renyi_a = t o o l s . sbm . erdos_renyi (n , p)
8 erdos_renyi_b = t o o l s . sbm . erdos_renyi (n , p)
9

10 # Compute l 1 norm
11 normal i zed_di f f = ( erdos_renyi_a − erdos_renyi_b ) / n∗∗2
12 l 1 = np . l i n a l g . norm( normal i zed_di f f . f l a t t e n ( ) , ord=1)
13

14 # Compute cutnorm
15 cutn_round , cutn_sdp , i n f o = compute_cutnorm ( erdos_renyi_a ,

erdos_renyi_b )
16

17 pr in t ( " l 1 norm : " , l 1 ) # p r i n t s l 1 norm value near ~0.5
18 pr in t ( "cutnorm rounded : " ,
19 cutn_round ) # pr i n t s cutnorm rounded s o l u t i o n near ~0
20 pr in t ( "cutnorm sdp : " , cutn_sdp ) # pr i n t s cutnorm sdp s o l u t i o n near ~0

Figure 4.2: Sample usage of package

cutnorm.tools

The tools module contains tools for making synthetic matrices like the Erdős-Rényi

random graph and stochastic block models. This is a useful tool for understanding the

advantages of Cutnorm and for testing the Cutnorm package.

4.4 Usage & Documentation

The package is simple to install and use. A sample usage of the package is shown

in Figure 4.2. For additional usage and documentation of the source code, please visit

https://pingkoc.github.io/cutnorm/intro.html.
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CHAPTER 5: APPLICATIONS AND RESULTS

The thesis will explore several applications of using the Cutnorm to understand

families of networks. Some of these applications are preliminary results. The objective

is to show the ability of Cutnorm to provide accurate methods to analyzing families of

networks.

The thesis has taken the approach of surveying different disciplines where dense

networks exist as well as models of dense networks. In fact, one could even argue

that dense networks can be extracted from problems of most disciplines given that one

approaches the problem from a certain perspective. For an example, a social network

of friendship is sparse. Our social interactions are very limited in the perspective of the

global population. As the total population of the network tends to infinity, n → ∞,

each individual’s handful of friends is almost non-existent in the global perspective.

As we discussed earlier, a sparse network will result in vanishing Cutnorm as n→∞.

Thus, applying Cutnorm techniques might not be adequate for social networks due to

its sparsity. However, if we are curious about relationships among the attributes of each

individual in the social network, we can extract dense networks form the relationship of

these attributes. Beyond just friendship, given attributes such as age, gender, political

affiliations, geolocation, and more, we can study relationships between people among

these attributes. Our network then becomes naturally dense since everyone has these

attributes, thus the number of connections between people does not diminish to zero

as we increase the population.

5.1 Graph Models

Models of dense networks help us benchmark our algorithm against known solutions.

Further, these models help to analyze the performance of the algorithms under different
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model parameters.

Below we will explore the various norms of the difference matrix under various

models. We compare the performance between various lp norms and the Cutnorm.

5.1.1 Erdős-Rényi Model

The thesis introduced Erdős-Rényi Models (ER) in the earlier chapters. Here we

revisit the Erdős-Rényi model to apply our Cutnorm package onto the models to mea-

sure performance. An Erdős-Rényi graph G(n, p) is a graph with n vertices and each

pair of vertices are connected with probability p.

Given two independent Erdős-Rényi random graphs with p = 0.5, we would like

to compute the distance between the two graphs. The edit distance between the two

graphs, the l1 norm of the difference matrix, is 0.5 with large probability [7]. Since

the different matrix has elements that are 1/− 1 with probability of 0.25, and 0 with

probability of 0.5. Thus the expected l1 norm is 0.5 with high probability.

As discussed previously, the global structure of the two graphs are similar. In terms

of graph convergence as n→∞, the two graphs converges to the same graphon. Thus

the l1 distance fails to give an accurate notion of global structural similarity.

The Cutnorm should be able to provide a good solution to the distance. We ob-

serve in Figure 5.1a that as n increases, the Cutnorm approaches 0 while the l1 norm

approaches 0.5. The other lp norms approach other constants that are non-zero.

We also show that � ≤ l1 ≤ l2 ≤ l∞ which matches previously established theory.

Further, we can examine the Cutnorm sets. The Cutnorm set is the underlying sets

I, J that generate the Cutnorm as shown in (2.2).

In Figure 5.1b, we show the Cutnorm sets on the difference matrix between two

ER graphs. For purposes of illustration, I have binned the elements in the set. At a

glance, we see that the Cutnorm sets are uniform. Uniformity in the Cutnorm sets
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(a) lp norms and Cutnorm on the differ-
ence matrix

(b) Cutnorm set on the difference matrix

Figure 5.1: Cutnorm and Cutnorm sets on the difference matrix of two independent
Erdős-Rényi p = 0.5 random graphs.

mean that no edge sets I, J strongly define the maximum of the Cutnorm. In other

words, the Cutnorm sets isolate structural differences between the two independently

generated ER graphs. Since the expectation of the summation of the elements of the

difference matrix is 0, regardless of which Cutnorm sets are generated, the expectation

of the summation has expectation of 0.

5.1.2 Erdős-Rényi p = 0.5 and Stochastic Block Model

Here we introduce another model, the Stochastic Block Model (SBM). SBMs have

been studied and used as a generalization to Erdős-Rényi models [11], [12]. Stochastic

Block Matrices are matrices with block regions that have a specific edge generating

probability p. Given row set R and column set C, partition the sets into R = R1 ∪

. . .∪RI , C = C1∪ . . .∪CJ , and generate elements with probability Pi,j for every region

in R×C.

Figure 5.2 shows an example with row and column partitioned into three sets. Each

region defined by the row and column have a probability Pi,j of generation.

24



P1,1 P1,2 P1,3

P2,1 P2,2 P2,3

P3,1 P3,2 P3,3

Figure 5.2: An example of SBM with row and column partitioned into three sets

0.5 0.5
0.5 0.5

(a) The edge generating probability ma-
trix of the ER model. All of the regions
have the same edge generating probability.

0.5 0.5
0.5 1.0

(b) The edge generating probability ma-
trix of SBM. Each element of the matrix
represents the edge generating probability.

Figure 5.3: The generating models for ER p = 0.5 and a specially defined SBM. The
difference matrix and the norms on the difference matrix will be computed against the
two graphs.

Recall Lovasz’s definition of a step function W ∈ W as a subset of the graphon

limit object W . The SBM is a finite definition for W . Consider the general model of

Erdős-Rényi random graphs and the SBM as n → ∞, while the Erdős-Rényi graphs

converges to a graphon limit object of p everywhere, the SBMs converges to a step

function defined by pi,j of the region.

SBMs are valuable to our study because it gives us a more general stochastic graph

model beyond the simple Erdős-Rényi graphs while still being very simple to define.

Given one Erdős-Rényi graph with p = 0.5 and a Stochastic Block Model with

p = 0.5 for three quadrants and p = 1.0 for one quadrant, we would like to find

the distance between the two graphs. Figure 5.3 illustrates the generating probability

matrix for the two models. We can see that the generating probability is identical in

most regions except one of the quadrants. The difference matrix D = dij has three

quadrants with Pr(dij = 1) = 0.25, Pr(dij = −1) = 0.25, and Pr(dij = 0) = 0.50, one

quadrant with Pr(dij = 1) = 0.50, and Pr(dij = 0) = 0.50.

Compare these two graphs to the two independent Erdős-Rényi random graphs case,

we can see that there is some global structural difference between the two graphs now.
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Figure 5.4: Cutnorm and Cutnorm sets on the difference matrix of an Erdős-Rényi
p = 0.5 random graph and a Stochastic Block Model graph where edges are independent
and uniformly random with p = 0.5 for 3 out of 4 quadrants and p = 1 for 1 out of 4
quadrants.

As n increases, with high probability, the l1 norm should still be 0.5. This indicates that

the l1 norm doesn’t tell us anything interesting beyond that the l1 distance between the

two is the same as the l1 distance in the case where the two are both ER. The Cutnorm

on the other hand should converge to 0.125 as n gets large. It should be 0.125 since it is

the sum of the difference in the quadrant that has different edge generating probability

between the two models. The Cutnorm gives an accurate representation of the global

structural difference for the examples studied here.

In Figure 5.4a, we confirm our hypothesis that the l1 norm still converges to 0.5

but the Cutnorm converges to 0.125. The other norms converges identically to the case

when two graphs were ER with same probability.

Figure 5.4b shows the Cutnorm sets on the difference matrix. Unlike the case of the

two ER graphs, the Cutnorm sets here show a distribution that highlights the region

where the two graphs are structurally different. Thus by examining the Cutnorm sets,
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Figure 5.5: Cutnorm between two isomorphic graphs but with one graph’s adjacency
matrix representation shifted by one position. Error bars are not visible.

we can identify the structural differences between the two graphs.

5.2 Misregistration/Shifting of Vertex Labeling

It is reasonable to assume that vertices get mislabeled or the labels are shifted during

a data extraction process. A robust norm should not penalize minor mislabeling or the

misalignment of the nodes between two adjacency matrices.

Given two identical Erdős-Rényi graphs with p = 0.5. If we consider the Cutnorm

or the lp norm of the two graphs, the norm values should be 0 since the two are

identical. However, we will take one of them and shift it by rolling the adjacency

matrix diagonally by 1 position. The underlying graphs are still isomorphic to each

other but adjacency matrix representation has simply changed.

Figure 5.5 shows the Cutnorm of the difference matrix. The lp norms increase

drastically while the Cutnorm stays relatively robust to this perturbation.

While this is an example with just ER graphs, we believe that the robustness

generalizes to other types of graphs.
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5.3 NEUROIMAGING

The human connectome is the map of neural connections in the human brain.

Connectomes are believed to be responsible for our mental and physical functions and

are the foundations of neuroscience [13]. However, the human connectome is large and

the full mapping requires substantial scientific advancements and computational power

that is not yet available. To give a perspective on the progress of Connectome research,

only few animals have had their Connectomes completely mapped out. Roundworm

C. Elagans was the first animal to have its Connectome mapped out in 1986 [14] and

it has 302 neurons. The human brain is estimated to have approximately 86 billion

neurons [15].

There are several projects aimed at accelerating the effort to map the human brain.

Among those, several take an open-data approach to release functional Magnetic Reso-

nance Imaging (fMRI) timeseries data of volunteers. They include, but are not limited

to, 1000 Connectome Project [16], MyConnectome Project [17], and Human Connec-

tomes Project [18]. These projects hosts initiatives for global collection of fMRI scans.

These fMRI scans are typically timeseries that can be passed through many data pro-

cessing pipelines that extract signals from the images. The signals extracted can be

mapped to existing atlases or brain parcellation that segment the brain into regions.

The fMRI analysis pipelines typically separated into various stages (illustrated in

Fig. 1 of [19]): ROIs estimation, time series extraction, matrix estimation, and clas-

sification. The ROIs estimation stage is where regions of interests are extracted from

the brain. Sometimes the regions of interests are referred to as an atlas. Different

parcellation of the brain highlight different signals. Time series extraction is where

the fMRI images are analyzed for activation within the ROIs. For an example, given

an atlas of 200 ROIs, signals from each of the ROIs are extracted through time. We
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will have a 200 × t timeseries data where t is the number of fMRI images in a fixed

amount of time. Matrix estimation generates a matrix that represents the connectivity

between different ROIs. This connectivity can be estimated through several methods

such as Pearson Correlation, Fisher correlation, partial correlation, tangent embedding,

and covariance. Abraham et al. [19] has shown that tangent embedding has good re-

sults for the ABIDE autism dataset. The classification stage can utilize any machine

learning model such as Support Vector Classification, Artificial Neural Networks, and

more.

This thesis focuses on the ADHD200 [20] dataset released by the 1000 Connectome

Project. The ADHD200 project managed to collect 973 fMRI brain scans from Atten-

tion Deficit Hyperactivity Disorder (ADHD) patients as well as control group. It was

a collaboration among several universities and research institutes around the world.

A competition was hosted in 2011 with the goal to learn a machine learning clas-

sifier that can predict individuals into three categories: ADHD-Combined, ADHD-

Inattentive, and healthy control. The competition was actually won by a team that

used only the phenotypic data of the participants without any of the fMRI scans [21].

The team achieved a diagnostic accuracy of 62.52%. At the time, the other teams

that used the fMRI scans for prediction were not able to achieve such accuracy. Better

methods of prediction and analysis of the data are still being sought after.

This thesis will attempt to use the Cutnorm to analyze distances between various

brain structures using results from existing data processing pipelines. The representa-

tion of brain connectivity as correlation matrices or tangent embedding is dense and

suitable for the use of the Cutnorm.

The Athena processing pipeline was used to prepare the brain parcellation for the

thesis. In particular, we used the CC200 brain parcellation timeseries for its finer-

grained ROIs. We followed the additional processing procedures in [19] to generate
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tangent embedding of the fMRI data. Each tangent embedding is a connectivity graph

of a brain.

We would like to investigate whether ADHD brains are structurally different to

healthy brains in terms of the Cut-Distance. Unlike the competition, we will simply deal

with the binary classification problem of ADHD/Healthy brain classification. To do so,

we take the tangent embedding graph and compute pairwise Cut-Distance among the

participants. This gives us a pairwise distance matrix between all of the participants.

We then take the distance matrix and compute a TSNE embedding to reduce the

dimensionality to 2 and plot the results. Distance Based F-Test [22] is also computed

on the computed Cutnorm pairwise distance matrix to get a quantitative view of the

separability of the individuals.

However, we need to extract the structures that are significant. The timeseries

and the tangent embedding graph contains structures that are not relevant to the

classification of ADHD and healthy brains. Since we view the Cut-Distance as a metric

for defining distances among graph structures, we need to suppress the structures

that are not important and amplify the structures that are. The optimum weights to

the difference matrix can be defined as the weights that maximizes the Cutnorm for

identically labeled individuals. For a binary classification task, the optimum weight

matrix W

argminW
∑
a∈P

∑
b∈P

(yayb) ‖W (Sa − Sb)‖�

where ya, yb ∈ {1,−1} are ADHD/Healthy labels and Sa, Sb are the tangent embedding

graphs of two individuals among the population set P . For individuals with the same

labels, yayb is positive and the Cutnorm should be minimized. For those with differing

labels, yayb is negative and the Cutnorm should be maximized.
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Since the Cutnorm is not easily differentiable, we can use other norms or methods

to approximate this optimization problem. One such example is the Forbenius norm

which can be solved exactly or approximated. Another method is to train a l2 regu-

larized SVM on the difference matrix of the tangent embedding. Since the SVM finds

margin maximizing separating hyperplane on the dataset, the normal should be suit-

able as weights of the difference matrix of tangent embedding. Multiplying the SVM

coefficients to the elements of the difference matrix is equivalent to computing the dis-

tance between two features with respect to the normal of the separating hyperplane.

We used the SVMs to approximate the optimum weights.

The SVMs trained with the entire dataset on the lower triangular elements of the

tangent embedding has training accuracy of 1.0. Thus the dataset is fairly linearly

separable and the SVM is able to learn a separating hyperplane that can separate the

training data perfectly. We the performed Stratified 3-Fold cross validation on the SVM

and obtained cross validation scores [0.6653, 0.6914, 0.5960] and an average of 0.6509.

This indicates that training on 2/3 of the data does not generalize well to testing on

the 1/3 of the data. A larger dataset might alleviate this problem but obtaining these

973 fMRI scans already took a lot of collaborative effort.

We have experimented with both weighted tangent embedding and non-weighted

tangent embedding. Figure 5.6 shows the TSNE embedding of the pairwise Cut-

Distance matrix and the matrix itself. We observe that the sorted pairwise Cut-

Distance in Figure 5.6b does not display clear block structure. Block structures in-

dicate similarity in Cut-Distance for subsets of the vertices (individuals in this case).

Perhaps also due to the lack of block structure, the TSNE embedding of the matrix

fails to display clear clustering between the two classes.

However, after we apply the SVM weights on the graphs, we start to see clear struc-

ture in pairwise Cut-Distance matrix in Figure 5.6d. Further, the TSNE embedding
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Figure 5.6: Pairwise Cut-Distance matrix and the TSNE embedding of tangent em-
bedding with and without weights learned from SVM.

of the Cut-Distance matrix also shows clear clustering among the two classes. For

illustrative purposes, I have also indicated the multiple types of ADHD, but structural

differences among the various ADHD measures are not clearly visible.

The thesis also computed DBF testing on the pairwise distance matrices of different

data processing pipelines. DBF testing offers a p-value to the difference in the distri-

bution of the two groups (in our case, ADHD and control) based on pairwise distances.

A low p-value (≤ 0.05 or ≤ 0.01) indicates strong inconsistency with the null hypoth-

esis that supposes the two classes are indistinguishable. Thus given a low p-value, we
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Matrix Estimation Type p-value
Pearson Correlation 9.26× 10−1

Covariance 8.94× 10−3

Tangent Embedding 8.71× 10−8

Tangent Embedding with SVM weights trained on 66% of data 0.00
Tangent Embedding with SVM weights trained on 100% of data 0.00

Figure 5.7: DBF Statistic Testing p-values for separation using pairwise distance matrix
under different matrix estimation methods.

can affirm that the two classes are clearly distinguishable. The thesis has computed

pairwise distances using various matrix estimation techniques: Pearson Correlation,

Covariance, Tangent Embedding, Tangent Embedding with SVM weights trained on

100% of the data, and Tangent Embedding with SVM weighs trained on 66% of the

data. Of these methods, we have only shown the TSNE embedding of the Tangent

Embedding with SVM weights in Figures 5.6. Figure 5.7 shows DBF p-values on the

pairwise distance matrix under various matrix estimation methods. We can observe

that besides Pearson Correlation, the other matrix estimation techniques display low

p-values. Given tangent embedding of the ROI timeseries data of ADHD and Control

individuals, one can compute the pairwise Cut-Distance that can be separated into two

groups up to some significance level. In particular, we see that Tangent embedding

with the SVM weights show the lowest p-value, indicating that the two groups can be

perfectly separated given this method of matrix estimation.

5.4 ARTIFICIAL NEURAL NETWORK REPRESENTATION

LEARNING

Consider training Artificial Neural Networks (NN) beyond just minimizing loss

functions, improving accuracy, or optimizing some other metric, but learning repre-

sentation of the dataset. This view of the NN is very appropriate for Autoencoders
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Figure 5.8: An example of a simple feed-forward Neural Network with fully connected
layers, n hidden layers, and 2 output nodes.

and Convolutional Neural Networks on images. Autoencoders learns a compressed en-

coding of the data while attempting to minimize the loss of data during the decoding

phase. Convolutional Neural Networks on images extract image features.

Li et al. has studied convergent learning in deep neural networks [23]. They looked

at whether feathers learned by different architectures are largely the same. To do

so, they studied bipartite matching between the learned representations of different

architectures.

We are similarly interested in studying the learned representation of a deep neural

network. However, instead of studying bipartite matching, we look at how the Cutnorm

can be used to give a distance between the learned representations.

See Figure 5.8 for an example of a simple feed-forward NN. As data passes through

the NN, the data representation changes. With non-linear activation functions on

each of the NN nodes, the data goes through non-linear transformations as it passes

through each layer. Consider the penultimate and the ultimate layer. The output of

the ultimate layer depends on the problem of interest: binary/multi-class classification,

estimation, or multi-label classification. The penultimate layer outputs a representation
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of the data such that the ultimate layer can easily prepare into a format that is suitable

for the problem. We can think of the penultimate layer output as a final learned

representation of the data.

For an example, the NN architecture in Figure 5.8 might be used for a binary

classification task. The penultimate layer might learn a representation to ensure that

the output layer can use a simple linear regression to separate the two classes.

We would like to investigate the convergence of the learned representation. To train

a NN network, the updates are propagated from the output layer towards the input

layers. Each update is an attempt to minimize some loss function or to change the

representation of the data so that the loss function is minimized. Therefore given some

convex loss function, we should observe the convergence of the loss through the updates.

The convergence of the loss should also be reflected on the data representation. If the

loss is being minimized each epoch, the updates should also be minimized. Minimizing

the updates means the data representation should converge.

To estimate data representation, we compute Pearson correlation between features

of the data. This is an idea borrowed from Neuroimaging where correlation between

different ROI represents functional connectivity.

Given n data samples xi ∈ Rd, 1 ≥ i ≥ n, we will capture the representation

at the penultimate level as zi ∈ Rk (k depends on the NN structure) and construct

a representation of the topology as A = aij where aij = corr(zi, zj), the Pearson

correlation between the two data points.

Let At be the data representation at the t’th epoch of the NN training process. By

considering ‖A0 − At‖�, where A0 is the original dataset, we would like to determine if

the Cut-Distance between the original dataset and the learned representation at time

t converges to some value as t→∞.

We would also like to investigate how the number of hidden layers affect the data

35



2 1 0 1 2 3

3

2

1

0

1

2

Figure 5.9: An example of Gaussian quantiles of 2-Dimension with 3 classes.

representation convergence rate. To achieve this, we need to find a dataset that is

non-linear. Consider each hidden layer of NN with a non-linear activation as adding

additional non-linear transformation to the data representation. Given some non-linear

data, a NN with no hidden layers should not achieve high accuracy since only linear

transformations were performed. A NN with more number of hidden layers should be

able to successfully transform the data representation so that the data is more linearly

separable as it gets to the penultimate layer. We will test this hypothesis and also

visualize the data representation through the use of Cutnorm.

To perform this experiment, we need to obtain some non-linear data. One such

dataset is the Gaussian quantiles. We generate n-dimensional Gaussian quantiles with

k-classes. Each class occupies a certain n-dimensional spherical shell. See Figure 5.9

for an example.

We wish to train a NN to classify a 10-dimensional 3-classes Gaussian quantile

dataset. PyTorch was used as the NN framework. The NN architecture consists of an
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Figure 5.10: Accuracy and Cutnorm results from NN trained on 10-dimensional 3-class
Gaussian quantile dataset.

input layer that has 10 nodes, n hidden layers with 10 nodes with tanh activation at

each node, and two output nodes. BCEWithLogitsLoss was used as our loss function

and Adam was used as the optimizer. Therefore with the number of hidden layers as

0, the NN acts as Logistic Regression.

Figure 5.10a shows the accuracy through training epochs. We can observe that

epochs to convergence is reduced as the number of hidden layers is increased. This

does not factor in the higher computational costs of a deeper NN. Deeper NN is able

to find non-linear transformations given much fewer data epochs.

Figure 5.10b shows the Cutnorm between the original data representation, A0,

and the data representation at the t’th epoch, At. We observe that the Cutnorm

converges to some value at around the 200’th epoch. Notice this is also where the

accuracy starts to converge in Figure 5.10a. The initial 0 − 200 epochs was a phase

with high fluctuations in Cutnorm. This is probably the period when the largest

updates are applied. Adam is an adaptive optimizer, thus it is expected that large
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updates are performed during the initial stages of the optimization [24]. The final

value of convergence for Cutnorm in Figure 5.10b is not extremely informative. Since

there may be multiple data representations that has similar Cut-Distance away from

the original data representation.

To see if the same representation is learned, we need to compare the learned repre-

sentation against the different NN architectures. This relates to the Measure Preserving

Maps discussed in previous chapters. We need Measure Preserving Maps between the

data representation learned by the different NN architectures. A brute force approach

would be to attempt all O(10!) permutations. Li et al. [23] has devised a method

to compute Bipartite matching between the learned representation of CNN on images

with great results. Since the thesis does not did not deal with Measure Preserving Map

in detail, this was not attempted.

The results from the analysis of data representation convergence shows that there

exists an additional method of analyzing convergence of NN training that is beyond

loss functions and the other existing metrics. The approach of directly monitoring

the convergence of data representation sheds light onto how different NN architectures

transform the dataset.
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CHAPTER 6: DISCUSSION AND CONCLUSION

This thesis presents the process to approximate the Cutnorm and its applications.

We have taken the algorithm detailed by Alon and Noar and applied Wen and Yin’s

search algorithm on it. We believe that this approach is computationally faster com-

pared to existing solutions.

Large graphs exists in many problem domains, the thesis explored synthetic models,

Neuroimaging problems, and Artificial Neural Network data representation learning.

Through the survey of graph convergence and limits, we gain an additional perspec-

tive on graphs that scale and the distance between them. This is especially applicable

in the context of the human connectome. As discussed, the human connectome is es-

timated to have 86 billion neurons. An fMRI scan provides a 3D representation of the

brain under a fixed resolution. Finer-grained brain parcellation can be used to map

out smaller regions of the brain, but, with the current technology, that is still not at

the scale of 86 billion neurons. Every brain parcellation is taking a sample of the brain

at a lower resolution. We would expect that as our technology advances, we will have

brain parcellation that are much higher resolution and we will have the computational

power to power such parcellation data. Therefore our discussion on the convergence of

functional connectivity of brain parcels to a graphon limit object becomes appropriate.

Given the brain parcellation data we have currently, we can compare the graphs under

the knowledge that these graphs converges to some graphon limit object.

The thesis has also taken the Cutnorm to theoretical models such as the Erdős Rényi

random models and the Stochastic Block models to verify our assumptions regarding

the Cut-distance between these graphs. We observed that for graphs that converges to

some graphon limit object, the Cutnorm approaches the expected value as n→∞.

Although this thesis has only addressed two practical disciplines for the use of Cut-
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norm, we believe that there are many more interesting problems where it is applicable.

The Cutnorm is useful in analyzing graph distances given that the graphs in questions

belong to a family of graphs and sufficiently dense.

The Cutnorm package detailed in this thesis is open source and available for quick

installation and public use.
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